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ABSTRACT

Background: Diabetic retinopathy is a leading cause of preventable visual impairment worldwide, necessitating effective screening programs. Artificial
intelligence (Al) and deep learning-based systems have emerged as promising tools for screening using retinal fundus photographs. However, their diagnostic
performance varies across populations, algorithms, and screening thresholds.

Objectives: To comprehensively evaluate and quantitatively synthesize the diagnostic performance of Al and deep learning-based systems for diabetic
retinopathy screening using retinal fundus photographs.

Methods: A systematic literature search was conducted across PubMed, Embase, Scopus, Web of Science, and IEEE Xplore from inception to December
2024. Studies evaluating Al or deep learning algorithms for detecting diabetic retinopathy using fundus photography with human expert grading as the
reference standard were included. Quality assessment was performed using QUADAS-2. Meta-analysis employed bivariate random-effects models.

Results: Forty-two studies comprising 521,568 retinal images were included. For detecting any diabetic retinopathy, pooled sensitivity was 87.5% (95% CI:
85.0-90.0%) and specificity was 84.2% (95% CI: 80.5-87.8%), with an AUROC of 0.92 (95% CI: 0.90—0.94). For referable diabetic retinopathy, pooled
sensitivity was 91.8% (95% CI: 89.2-94.3%) and specificity was 87.5% (95% CI: 84.3-90.7%), with an AUROC of 0.95 (95% CI: 0.93-0.97). External
validation studies demonstrated lower performance compared to internal validation (AUROC 0.90 vs 0.94). Convolutional neural networks showed the
highest diagnostic accuracy among Al architectures.

Conclusions: Al and deep learning systems demonstrate high diagnostic accuracy for diabetic retinopathy screening, approaching human expert performance.
These technologies show promise for expanding screening access, particularly in resource-limited settings. However, performance varies by validation
setting and population characteristics, highlighting the need for rigorous external validation before clinical implementation.

Keywords: Artificial Intelligence; Deep Learning; Diabetic among adults with diabetes is estimated at approximately 35%,
Retinopathy; Fundus Photography; Diagnostic Accuracy; with vision-threatening diabetic retinopathy affecting about 10%
Systematic Review; Meta-analysis of diabetic patients. Early detection and timely treatment are
essential for preventing visual impairment and blindness.

Introduction

Diabetic retinopathy is a common microvascular complication  Current screening programs rely on retinal fundus photography
of diabetes mellitus and a leading cause of preventable vision interpreted by trained ophthalmologists or optometrists.
loss worldwide. The global prevalence of diabetic retinopathy However, the increasing global burden of diabetes, combined
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with limited availability of trained professionals, creates
significant challenges in delivering effective screening at scale.
These resource constraints are particularly acute in low- and
middle-income countries where the diabetes epidemic is rapidly
expanding.

In recent years, artificial intelligence (Al) and deep learning-
based systems have been increasingly developed to assist in
diabetic retinopathy screening. These automated systems analyze
retinal images to detect signs of diabetic retinopathy with the
goal of matching or exceeding human expert performance. Deep
learning algorithms, particularly convolutional neural networks
(CNNs), have shown remarkable capability in image recognition
tasks and have been adapted for medical image analysis.

Although numerous primary studies have reported promising
diagnostic accuracy of these Al-based technologies, their
performance varies across different populations, algorithms,
screening thresholds, and validation settings. Existing reviews
are limited by heterogeneous populations, lack of quantitative
synthesis, or failure to systematically evaluate sources of
variability in diagnostic performance. A comprehensive
systematic review with rigorous meta-analysis is needed to
establish the current state of evidence and inform clinical
implementation.

The objective of this systematic review and meta-analysis was

to evaluate the diagnostic performance of Al and deep learning-

based systems for diabetic retinopathy screening using retinal

fundus photographs. Specifically, we aimed to:

e estimate pooled diagnostic accuracy compared to human
expert grading.

* explore sources of heterogeneity according to disease
severity thresholds.

e evaluate differences in performance based on validation
setting.

e characterize Al model types associated with superior
diagnostic performance and

«  assess the clinical applicability of Al-based screening tools.

Methods

This systematic review and meta-analysis was conducted and
reported in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines and the Cochrane Handbook for Systematic Reviews
of Diagnostic Test Accuracy. The protocol was registered
prospectively in PROSPERO (CRD420251275481).

Eligibility Criteria

Diagnostic accuracy studies, cross-sectional studies, and
validation studies evaluating Al or deep learning algorithms for
diabetic retinopathy detection were included. Both prospective
and retrospective studies were eligible. Studies involving adult
patients (age >18 years) with diabetes mellitus (type 1 or type
2) undergoing screening or diagnostic evaluation for diabetic
retinopathy were included.

The index test was any Al or deep learning-based algorithm
designed to detect diabetic retinopathy from retinal fundus
photographs, including convolutional neural networks (CNNs),
ensemble methods, and other machine learning approaches.

Studies were required to report sufficient data to construct 2x2
diagnostic accuracy tables. The reference standard was human
expert grading by ophthalmologists, retinal specialists, or
trained certified graders using established grading systems such
as the Early Treatment Diabetic Retinopathy Study (ETDRS)
or International Clinical Diabetic Retinopathy Disease Severity
Scale.

The primary target conditions were: (1) any diabetic retinopathy
(mild, moderate, or severe non-proliferative diabetic retinopathy;
proliferative diabetic retinopathy; or diabetic macular edema),
and (2) referable diabetic retinopathy (moderate or severe
non-proliferative diabetic retinopathy, proliferative diabetic
retinopathy, or diabetic macular edema requiring referral to an
ophthalmologist). Conference abstracts, case reports, reviews,
editorials, and animal studies were excluded.

Information Sources and Search Strategy

A comprehensive literature search was conducted in PubMed/
MEDLINE, Embase, Scopus, Web of Science, IEEE Xplore, and
the Cochrane Library from inception to December 2024. The
search strategy combined terms related to diabetic retinopathy,
artificial intelligence, deep learning, machine learning, diagnostic
accuracy, and fundus photography. Medical Subject Headings
(MeSH) terms and keywords were adapted for each database.
No language or date restrictions were applied. Reference lists of
included studies and relevant review articles were hand-searched
for additional studies.

Study Selection and Data Extraction

Two independent reviewers (NS and TT) screened titles
and abstracts against eligibility criteria. Full-text articles
of potentially eligible studies were retrieved and assessed
independently. Disagreements were resolved through discussion
or consultation with a third reviewer (SL). A standardized
data extraction form was used to collect study characteristics,
population characteristics, index test details, reference standard
information, and diagnostic accuracy outcomes.

Quality Assessment

Risk of bias and applicability concerns were assessed using
the Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) tool, adapted for Al-based diagnostic studies.
Two reviewers independently assessed each study across four
domains: patient selection, index test, reference standard, and
flow and timing. Each domain was rated as having low, high, or
unclear risk of bias.

Statistical Analysis

Diagnostic accuracy data were presented in 2x2 tables and forest
plots showing sensitivity and specificity with 95% confidence
intervals. Pooled estimates of sensitivity and specificity were
calculated using a bivariate random-effects meta-analysis
model, which accounts for the correlation between sensitivity
and specificity and for heterogeneity between studies.
Summary receiver operating characteristic (SROC) curves were
constructed, and the area under the SROC curve was calculated.

Statistical heterogeneity was assessed visually using forest plots
and SROC curves, and quantified using the I? statistic. Sources
of heterogeneity were explored through subgroup analyses
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and meta-regression. Pre-specified subgroup analyses were
conducted based on disease severity threshold, validation setting,
Al model architecture, and geographic region. Publication bias
was assessed using funnel plots and Deeks’ test. All statistical
analyses were performed using R software (version 4.3.2) with
the mada, meta, and metafor packages. Two-sided P values
<0.05 were considered statistically significant.

Results

Study Selection

The systematic search identified 2,847 records. After removing
612 duplicates, 2,235 records were screened by title and abstract,
resulting in 156 full-text articles assessed for eligibility. Of
these, 42 studies met all inclusion criteria and were included
in the meta-analysis (Figure 1). The most common reasons
for exclusion were insufficient data to construct 2x2 tables
(n=48), inappropriate reference standard (n=32), and duplicate
populations (n=18).

and Meta-analysis

Study Selection Process for Systematic Review

I IDENTIFICATION

Records identified through database

| screexG

Records excluded

| ey

Full-text articles assessed for eligibility
(n=156)

| mcrvoen

Studies included in qualitative
synthesis

(n=42)

Figure 1: Prisma Flow Diagram

Study Characteristics

The 42 included studies comprised a total of 521,568 retinal
images from patients with diabetes. Studies were conducted
across diverse geographic regions, including North America
(n=12), Europe (n=10), Asia-Pacific (n=15), and other regions
(n=5). Publication years ranged from 2016 to 2024. Sample
sizes varied from 312 to 128,175 images per study. Twenty-three
studies (54.8%) performed external validation on independent
datasets, while 19 studies (45.2%) reported only internal
validation results.

Al Model Characteristics
The majority of algorithms utilized convolutional neural
network architectures (n=28, 66.7%), including Inception (n=8),

ResNet (n=7), VGG (n=6), and DenseNet (n=7). Ensemble
methods combining multiple models were employed in 10
studies (23.8%). Transfer learning approaches, where models
pre-trained on large image datasets were fine-tuned for diabetic
retinopathy detection, were used in 19 studies (45.2%). Four
studies (9.5%) evaluated vision transformer architectures.

p—,

Figure 2: Forest Plot of Diagnostic Accuracy

Diagnostic Performance

Detection of Any Diabetic Retinopathy

For detecting any diabetic retinopathy, 38 studies provided
sufficient data for meta-analysis. The pooled sensitivity was
87.5% (95% CI: 85.0-90.0%) and pooled specificity was 84.2%
(95% CI: 80.5-87.8%). The summary area under the receiver
operating characteristic curve (AUROC) was 0.92 (95% CI:
0.90-0.94). Substantial heterogeneity was observed across
studies (I* = 89.3% for sensitivity; [> = 91.7% for specificity).

AT Systems for Disbetie Retinopathy Detection

A. Any Diabetic Retinopathy

B. Referable Diabetic Retinopathy

@ Somoy cpentogpeint 10

Figure 3: Summary Receiver Operating Characterstic (SROC)
Curves

Detection of Referable Diabetic Retinopathy

For detecting referable diabetic retinopathy, 35 studies were
included. The pooled sensitivity was 91.8% (95% CI: 89.2—
94.3%) and pooled specificity was 87.5% (95% CI:
84.3-90.7%). The AUROC was 0.95 (95% CI: 0.93-0.97). The
higher sensitivity for referable diabetic retinopathy compared
to any diabetic retinopathy reflects the more pronounced retinal
changes associated with more severe disease stages.

Subgroup Analyses

Validation Setting

Studies  performing internal  validation demonstrated
significantly higher diagnostic accuracy compared to those with
external validation. Internal validation studies showed pooled
sensitivity of 92.3% (95% CI: 89.5-95.0%) and specificity of
88.7% (95% CI: 85.2-92.1%), with AUROC of 0.94. In contrast,
external validation studies showed pooled sensitivity of 86.4%
(95% CI: 83.0-89.8%) and specificity of 82.6% (95% CI: 78.5—
86.7%), with AUROC of 0.90. This difference was statistically
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significant (P<0.001) and highlights the importance of external
validation for assessing real-world performance.

Table 1: Pooled Diagnostic Performance of AI Systems for
Diabetic Retinopathy Detection

Detection | Sensitivity | Specificity Studies
Threshold (%) (%) AUROC (n)
0.92
87.5 84.2
Any DR (85.0-90.0) | (80.5-87.8) (8 32; 38
Referable 91.8 87.5 ((())g;_ 35
DR (89.2-94.3) | (84.3-90.7) 0'97)
Internal 92.3 88.7 ((()) g;_ 19
validation | (89.5-95.0) | (85.2-92.1) 0 '9 6)
External 86.4 82.6 (8 gg(;)_ 23
validation | (83.0-89.8) | (78.5-86.7) 0 '92)

DR = diabetic retinopathy; AUROC = area under the receiver
operating characteristic curve. Values presented as point estimate
(95% confidence interval).

Al Model Architecture

Convolutional neural network-based algorithms demonstrated
the highest diagnostic accuracy among Al architectures,
with AUROC ranging from 0.91 to 0.94. Ensemble methods
combining multiple models showed superior performance
(AUROC 0.93-0.96) compared to single-model approaches.
Vision transformer architectures, though represented in fewer
studies, showed promising results with AUROC of 0.92-0.95.

Table 2: AI Model Characteristics and Diagnostic
Performance
Al Model Type Studies n (%) | AUROC Range
CNN-based (Inception,
ResNet, VGG, DenseNet) A1) UI=US
Ensemble methods 10 (23.8) 0.93-0.96
Transfer leaming 19 (45.2) 0.90-0.93
approaches
Vision transformers 4(9.5) 0.92-0.95

CNN = convolutional neural network; AUROC = area under the
receiver operating characteristic curve.

Geographic Region

Studies from North American and European regions
demonstrated slightly higher diagnostic efficacy (AUROC 0.93—
0.95) compared to Asian-Pacific regions (AUROC 0.90-0.93).
This difference may reflect longer histories of Al algorithm
development, larger and more diverse training datasets, and
differences in disease manifestation across ethnic populations
with varying fundus pigmentation characteristics.

Quality Assessment
Quality assessment using QUADAS-2 revealed that 19 studies
(45.2%) were at low risk of bias across all domains (Figure

4). The most common concerns were patient selection bias in
studies using archived datasets that did not represent consecutive
screening populations (n=15, 35.7%), and unclear reference
standard interpretation due to variability in grader qualifications
and adjudication processes (n=11, 26.2%). Sensitivity analysis
excluding studies at high risk of bias showed similar pooled
estimates, suggesting robust findings.

caracy Studies for Al Based Diabet Screening 2

Uaclss Risk/ ancleas Cone e [ High Rk

B. Applicability Concerns (Proportion of Studies)

Figure 4: QUADAS-2 Risk of Bias and Applicability Concerns
Assessment
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Figure 5: Funnel plot for Publication Bias
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Publication Bias

Visual inspection of funnel plots revealed slight asymmetry
(Figure 5), with a tendency toward studies reporting higher
diagnostic accuracy. However, Deeks’ test did not reach
statistical significance for either any diabetic retinopathy
(P=0.08), suggesting that substantial publication bias was
unlikely. The observed asymmetry may reflect the genuine
variation in algorithm performance across different validation
settings and populations.

Discussion
Summary of Main Findings
This systematic review and meta-analysis provides

comprehensive evidence that Al and deep learning systems
demonstrate high diagnostic accuracy for diabetic retinopathy
screening. The pooled sensitivity of 87.5% and specificity of
84.2% for detecting any diabetic retinopathy, combined with an
AUROC of 0.92, indicate that these technologies can achieve
diagnostic performance approaching that of human expert
graders. For referable diabetic retinopathy, the even higher
sensitivity of 91.8% suggests particular utility in identifying
patients requiring specialist referral.

To contextualize these findings clinically, using Fagan
nomogram analysis, a positive Al screening result increases the
probability of diabetic retinopathy from a baseline prevalence
of approximately 35% to approximately 85-90%. Conversely, a
negative result reduces the post-test probability to approximately
5-8%. These predictive values demonstrate substantial clinical
utility for both ruling in disease requiring referral and ruling out
disease in low-risk populations.

Sources of Heterogeneity

Our analysis identified several key sources of heterogeneity in
diagnostic performance. The most clinically important finding
was the significant difference between internal and external
validation studies, with external validation showing lower
performance (AUROC 0.90 vs 0.94). This gap highlights
potential overfitting to training data distributions and underscores
the critical importance of rigorous external validation before
clinical deployment.

Image quality emerged as an important determinant of diagnostic
accuracy. Studies using higher-resolution images (>1000x1000
pixels) demonstrated superior performance, reflecting the
importance of detailed visualization of retinal microvasculature
and subtle lesions for accurate detection of early diabetic
changes. Algorithm architecture also influenced performance,
with ensemble methods and CNN-based approaches showing
the highest diagnostic accuracy.

Clinical Implications

The clinical implications of these findings span multiple
domains. First, Al-based systems can dramatically improve
the efficiency and coverage of diabetic retinopathy screening
programs by processing large volumes of fundus images rapidly
and consistently. This capacity is especially valuable in rural or
underserved areas where ophthalmologists are scarce, enabling
primary care facilities to extend screening access to populations
lacking specialist care.

Second, Al-enabled telemedicine represents a promising avenue
for expanding screening access. Patients in remote areas can have
fundus photographs captured locally using portable cameras,
with images transmitted electronically for automated Al analysis.
This approach ecliminates geographic barriers to screening
participation while ensuring that limited specialist resources are
directed toward patients with the greatest clinical need.

Third, accurate Al-based severity grading can support evidence-
based treatment decisions and optimize resource allocation. By
providing consistent, objective disease staging, these systems
can help prevent both overtreatment of mild disease and
undertreatment of vision-threatening conditions. Studies have
demonstrated that Al-based screening is more cost-effective than
manual grading, potentially providing efficient medical services
with reduced per-patient screening costs.

Limitations and Challenges

Despite considerable promise, several important limitations
must be acknowledged. Current Al systems maintain measurable
error rates, with false negative rates of approximately 12%
and false positive rates of approximately 9%. False negatives
may lead to delayed treatment of sight-threatening disease,
while false positives generate unnecessary referrals and patient
anxiety. These limitations highlight the ongoing need for human
oversight in clinical deployment.

The “black box” nature of deep learning models presents
challenges for clinical adoption. Current systems cannot provide
reasoning behind their diagnostic conclusions, potentially
limiting clinician trust and effective human-Al collaboration.
Development of explainable Al techniques represents an
important research priority for next-generation systems.

Legal and ethical considerations around liability, algorithmic
bias, data privacy, and equitable access require careful attention.
Current legal frameworks do not clearly address responsibility
when Al systems contribute to diagnostic errors. Professional
societies and regulatory agencies must develop clear guidelines
for ethical Al deployment in medical diagnosis.

Study Limitations

This systematic review has several limitations. First, substantial
heterogeneity across studies limited the precision of pooled
estimates. Second, some studies lacked detailed classification
of diabetic retinopathy subtypes, affecting evaluation across
the full disease spectrum. Third, meta-regression analyses may
not have fully captured patient-level variables such as diabetes
duration and comorbidities. Fourth, the reference standard of
expert grading has its own imperfections, potentially affecting
measured Al performance. Finally, most Al models were self-
developed with limited transparency regarding pre-training and
learning parameters.

Future Directions

Several research priorities emerge from this review. Enhanced data
collection including detailed patient demographics and clinical
characteristics will enable more comprehensive performance
evaluation. Large-scale multi-center validation studies will
improve algorithm generalizability across diverse populations.
Development of human-Al collaboration models that combine
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ophthalmologist expertise with Al assistance can optimize work
efficiency and medical resource utilization. Finally, establishing
standardized imaging protocols and quality benchmarks will help
maximize Al performance across clinical settings.

Conclusion

Summary of Key Findings

This systematic review and meta-analysis, encompassing
42 studies and over 520,000 retinal images, provides
comprehensive evidence that artificial intelligence and deep
learning systems achieve high diagnostic accuracy for diabetic
retinopathy screening. The pooled sensitivity of 87.5% (95% CI:
85.0-90.0%) and specificity of 84.2% (95% CI: 80.5-87.8%)
for detecting any diabetic retinopathy, combined with an area
under the receiver operating characteristic curve (AUROC) of
0.92, demonstrate that these technologies can achieve diagnostic
performance approaching that of human expert graders.

For referable diabetic retinopathy—the clinically critical
threshold for specialist referral—AI systems demonstrated even
stronger performance, with pooled sensitivity of 91.8% (95% CI:
89.2-94.3%) and specificity of 87.5% (95% CI: 84.3-90.7%),
yielding an AUROC of 0.95. These findings indicate that Al-
based screening tools are particularly effective at identifying
patients who require urgent ophthalmological evaluation, which
is the primary goal of population-based screening programs.

Convolutional neural network architectures, particularly
ensemble methods combining multiple models, demonstrated the
highest diagnostic accuracy among the Al approaches evaluated.
The widespread adoption of transfer learning techniques, where
models pre-trained on large general image datasets are fine-tuned
for diabetic retinopathy detection, has contributed to achieving
high performance even with relatively limited ophthalmological
training data.

Clinical Implications and Recommendations

The clinical implications of these findings are substantial
and multifaceted. First, Al-based screening systems show
considerable promise for addressing the growing global burden
of diabetic retinopathy, particularly in regions facing acute
shortages of trained ophthalmologists and retinal specialists.
The World Health Organization estimates that approximately
35% of the 537 million adults with diabetes worldwide have
some degree of

diabetic retinopathy, yet the majority lack access to regular
screening. Al-enabled screening could dramatically expand
coverage by enabling point-of-care screening at primary
healthcare facilities, community health centers, and even
pharmacies equipped with portable fundus cameras.

Second, our findings support the integration of Al systems as
a triage tool within existing screening pathways. Rather than
replacing human expertise, Al can serve as an efficient first-line
filter, rapidly identifying patients with normal or mild disease
who do not require immediate specialist attention, while flagging
those with referable disease for priority review. This hybrid
approach optimizes the allocation of scarce specialist resources
while maintaining high-quality care standards.

Third, the telemedicine applications of Al screening are
particularly compelling. Patients in remote or underserved areas
can have fundus photographs captured locally using portable
cameras, with images transmitted electronically for automated
Al analysis and, when necessary, remote specialist review.
This approach eliminates geographical barriers to screening
participation and enables more frequent monitoring for high-risk
patients without overwhelming specialist capacity.

However, several important caveats must guide clinical
implementation. Our meta-analysis revealed that external
validation studies demonstrated significantly lower diagnostic
accuracy compared to internal validation (AUROC 0.90
vs. 0.94, P<0.001). This performance gap highlights the
critical importance of validating Al systems on populations
representative of intended deployment settings before clinical
implementation. Algorithms trained predominantly on images
from specific ethnic groups, camera systems, or clinical settings
may show reduced performance when applied to different
populations or imaging conditions.

Recommendations for Implementation

Basedonourfindings, we propose the following recommendations
for healthcare systems considering Al implementation for
diabetic retinopathy screening:

For clinicians and healthcare providers: Al systems should be
implemented as decision-support tools rather than autonomous
diagnostic systems. Human oversight remains essential,
particularly for borderline cases, poor-quality images, and
patients with complex presentations. Clinicians should
understand the strengths and limitations of Al systems,

including the types of errors they tend to make, to appropriately
interpret and act on Al-generated recommendations.

For policymakers and health system administrators:
Implementation of Al screening should be preceded by rigorous
local validation studies to confirm performance in the target
population. Regulatory frameworks should be established
to ensure appropriate oversight, quality assurance, and clear
accountability for diagnostic decisions. Investment in imaging
infrastructure, connectivity, and workforce training is essential
to realize the full potential of Al-enabled screening programs.

For researchers and technology developers: Future development
efforts should prioritize improving generalizability across
diverse populations, imaging systems, and clinical settings.
Development of explainable Al techniques that can provide
clinicians with interpretable reasoning for diagnostic
classifications will enhance trust and facilitate effective human-
Al collaboration. Prospective studies evaluating real-world
clinical outcomes, cost-effectiveness, and patient acceptability
are needed to build the evidence base for widespread adoption.

Implications for Global Health Equity

The potential of Al to address global disparities in diabetic
retinopathy screening access deserves particular emphasis. Low-
and middle-income countries bear a disproportionate burden of
diabetes-related blindness due to limited specialist availability,
inadequate screening infrastructure, and financial barriers to
care. Al-based screening offers a pathway to democratize access
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to early detection, enabling timely intervention that can prevent
irreversible vision loss.

However, realizing this potential requires deliberate attention to
equity considerations. Al systems trained primarily on images
from high-income country populations may perform less well
when applied to underrepresented ethnic groups or in settings
with different camera systems and imaging protocols. Ensuring
equitable benefit from Al technology will require inclusive
dataset development, local validation, and adaptation of
implementation models to diverse healthcare contexts.

Limitations and Areas for Caution

Despite the encouraging findings of this meta-analysis, several
limitations warrant caution in interpreting and applying these
results. Current Al systems maintain measurable error rates, with
false negative rates of approximately 12% and false positive
rates of approximately 9% in pooled analyses. While these rates
are comparable to human graders, they translate to clinically
significant numbers of missed diagnoses and unnecessary
referrals when applied at population scale.

The substantial heterogeneity observed across studies (I2
exceeding 89% for both sensitivity and specificity) indicates
that Al performance varies considerably depending on the
specific algorithm, population, imaging conditions, and study
methodology. This variability means that pooled estimates
should not be uncritically assumed to apply in any given clinical
context; local validation remains essential.

Legal and ethical frameworks for Al-assisted diagnosis remain
underdeveloped in most jurisdictions. Questions of liability when
Al systems contribute to diagnostic errors, appropriate standards
for informed consent when Al is involved in clinical decisions,
and mechanisms to ensure algorithmic fairness and prevent
discrimination require ongoing attention from professional
societies, regulators, and policymakers.

Future Research Priorities

Several key research priorities emerge from this systematic
review. First, large-scale prospective studies evaluating Al
screening in real-world clinical settings are needed to assess
whether the high diagnostic accuracy observed in validation
studies translates to improved patient outcomes, including
reduced rates of vision loss and blindness. Second, head-to-head
comparisons of different Al systems, ideally using standardized
validation datasets, would help clinicians and health systems
select optimal tools for their settings.

Third, research on optimal human-Al collaboration models
is needed to determine how Al recommendations should be
presented to clinicians, what confidence thresholds should
trigger different clinical actions, and how to maintain appropriate
human oversight without negating efficiency gains. Fourth,
development and validation of Al systems capable of detecting
multiple retinal pathologies simultaneously would enhance
the value proposition of Al screening by identifying not only
diabetic retinopathy but also glaucoma, age-related macular
degeneration, and other sight-threatening conditions during a
single screening encounter.

Fifth, economic evaluations comparing the cost-effectiveness of
various Al implementation strategies across different healthcare
contexts would inform resource allocation decisions. Such
analyses should consider not only direct costs of Al systems
and imaging equipment but also downstream effects on referral
patterns, treatment costs, and productivity losses from vision
impairment [1-25].

Concluding Remarks

In conclusion, this comprehensive systematic review and meta-
analysis provides robust evidence that Al and deep learning
systems have achieved sufficient diagnostic accuracy to serve
as effective tools for diabetic retinopathy screening. With pooled
AUROC values exceeding 0.90 for both any diabetic retinopathy
and referable diabetic retinopathy detection, these technologies
represent a significant advance in our capacity to identify and
treat sight-threatening disease before irreversible vision loss
occurs.

The demonstrated performance gap between internal and external
validation underscores that successful clinical deployment
requires rigorous validation in representative populations and
careful attention to implementation factors that may affect real-
world performance. Al should be viewed not as a replacement
for human expertise but as a powerful augmentation that extends
the reach and efficiency of specialist care.

The optimal approach combines Al technology with human
clinical expertise, leveraging the complementary strengths of
automated screening—consistency, scalability, and tireless
processing capacity—with specialist diagnostic judgment,
clinical context integration, and patient-centered care. This
collaboration offers the most promising pathway to achieving
the global goal of eliminating preventable blindness from
diabetic retinopathy.

As the global diabetes epidemic continues to expand,
particularly in low- and middle-income countries where
specialist resources are most constrained, Al-based screening
offers a transformative opportunity to bridge the gap between
screening need and specialist capacity. Realizing this potential
will require sustained investment in research, infrastructure,
workforce training, and health system adaptation. The
evidence synthesized in this review provides a strong
foundation for evidence-based decision-making as healthcare
systems worldwide navigate the integration of Al into diabetic
retinopathy screening programs.

Ultimately, the success of Al in diabetic retinopathy screening
should be measured not by algorithmic performance metrics
alone but by its contribution to reducing the burden of preventable
vision loss and blindness among people with diabetes worldwide.
By enabling earlier detection, more efficient resource allocation,
and expanded access to screening, Al technology has the
potential to fundamentally improve outcomes for the hundreds
of millions of people at risk of diabetic eye disease. The findings
of this systematic review support continued investment in
this promising technology while emphasizing the need for
thoughtful, evidence-based implementation approaches that
prioritize patient safety and health equity.
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